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F The method of quasilinearization is a combination of the properTins

of the high-speed digital computer with establishei lnearizatior

techniques in such a fashion that it can be used as a method of

identifying parameters. The mThcrnatics used izn the program is

developed in detail and an example is given of its usc.

Essenti.!l -, the method is an efficient device of searching for

unknown parameters existinc in a set of alcebraic or differential

equations. The mathematical concepts are historical but the com-

i Ibination of historical mathematics with the high-speed digital

computer yields new and useful results.
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7 I GFNE.AI.. DlS(7R IPTION

In many computer applications there is a set of test data Y..

(value of some qiven function r at a time sample ti ) from -n experiment

W T_ and a mathematical model of the experiment that takes the form.

F (i.1] P, (x (t) 1, ,K

wbere N(t) is constrained by N first order differential entinti on-

'-(1.2] x(t) = f(x{t) ,t'c)

with initial conditions x(t). The vectors x(t), f(x(t),t:c) and c ire

E (1.3 x(t) (x ( (t),x2(t),...,xn t))

2 n

7 (1.4) f(x(t),t ;c) _ (f (Y(t) ,t ;c) f2 (x(t),tc). t

( ?5,) c.(C. c 2 . . c I , c cL+ 2  c I K

The first I components of the vector c repreoent. a ;et of 1

unknown initial conditions and the 1.1 to L+K components of c are unknown

parameters of a niven set of differential equations. Ileterrinino. the

vector c from teqt data would provide a complete mathematical model of

the experiment.

One method to determine c would he to select it in s'me sort of

intuitive way, substitute it into (I 1), inteprate (1.2), - otitiute this

value of x(t) into (1.1 and then compar( with the known test data Y '..

From the results an intuitive ess corild be maide for arthe,- c th-at

ri-ht bring (X(t.))closer to the test "ta Y. A search of thi ,,,"
is time consi|min?, and rpqliires 'tessin' as one l-proaches the cnncent of

a "eood fit."

Pichard Bellman [1 ha, described a method that iises the computer

to s earch for a vector c that minimizes the equation
NP NK

(, i i t. ) Y i



where, v~t A (termi nod from t) = f (Y(t~ ,tr-) wi th i n;t inIl ro'l ft in'

y (t iri '2' r r- I r 1 ti ve we i -'ht- of' \ (Ii ffer't 47,mct i nn c (vt

Th i re"',,rt ~cj) t;,, tmer," ;~n thfe (>~! 'm"t'~ r'

;pit )Vc(+e' for thr ri nimirl of e''r1t i nu (1r h" 'r 7 r, rn -' n; i1

obt li-,ct -it HC' md then modified e--tCTsj V( 1'.' IIN Ir. Toh T ned; to

imm :-""v the C-Or'Cr"enlCo technioeq for a e ven -ol ution.
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2. ,ATHEMATICAl ANALYSIS

2.1 Approximations and AssumptionsI

In eo'nation (1.5) the components of vector c are assumed to

be composed of 1, unknown initial conditions and K unknown parameters.

,lthotoh the equation Q. (x(t) ) in many cases will be simply

(x(t)) = x.(t), for the purpose of hein7 r,eneral f.(x(t)) is considered

as any function of x(t) that may he approximated by,

*1 (xk~t)
(2.1.1) !7 (x(t)) = ,.(xft ) 0 + (Xk Xk t)o " x, . .

-V

where x(t) is the .,ector r'cnerated by arsuminf. (or calculatinf') an initial

1. vector c, (1.5), and interratinp (1.2) over tle desired range of the

independent variable t. It is about this nominal vector xt) thnt theF (1)0lineari ition (2.1.11 tak-s n lace (

Sihstitiitini, (2,1.1) into (1.6) give-,I ~NP NK n(.t

.(C) ((t ( k(t )x (t ) Y ii

ij=1 K=l

where

X (t) = the nominal or present k-th component of the vector x(t)

xk(r) - the improved k-th component of vector x(t)

Let

tIT f2.1.3) 'k x (t)o + rk(t

where

W.(t a correction on the vector component xk(t)ILi .... . ...
(1

x(t) is the nominal or j.resent value of vector x(t)
0

x(t i  is the valie of the vector x(t) at t tLi -3



'Ssume that ( t) may' he Ipproximated by tile linear explression,

1,

(2.1,4) Ez (t) = j£hk.t W 1 + r .(t)

where I

g correct i ons to uinknown iti 11 condi ti ori

correc-tions to the uink nown paraneters

Thus

(21
o1~ lilt cd I o orusent j

C m~ie in presevt mes I 1 . * .k

;and the flinct i cl hk ( 1t1(1 rk ft ;i ;Tc ol~ !it I ens to tli( i(-err

d i ff cnt i i ' (: I I lt oP 1),

%m lre h f
n) o

r ru TII
whecre r~ (t I

It isasmdthat x (t Ican he 1 nncari zed so that to j f i r,;t

;Ippiroxirnat IOT the correcticinl 6 ft) dlepend li e.arN.v on -ian,!

(1 Ther these 110t'crentii oi Cmtions :ind thevir IT1fl~l Cai clition- co-c
f rnm t"ilIl he shown inT Sect i on 2.2

(0 x0 t 00
(3) f f (xit) .J -0 ter' 0 T, i TI t h ( I 1ij1-

n1= fo r n
-~~~~ mt(r~iS

1 -4-



[ and when crinver-ence iq ohtaineci

J.(2.1 .9) o. ()2, and E k(t)-

er2 -riri :atinn of tic iiFferertial loultlifl

Vi eanr-,ticn of the di fferential -vstem (1.?) yijehis C(lltionSl

F (2 1. 7) and (2,.8 ) . To -,how how the-se di fferenti-ii emat ions, are derivedl

rei'r i tc for co!oven ii oce e,uat io!, (I ."),

f' x t ft - c

010 rOe the- ji t i aI Icd CTI( I 

(2.?? x.(t x c Are oi ven ini t ial cond Itin ml

'Id

(2.2 P c ~ ire "mVCTI T,1nrnetcr "Q~'

F kom n iti-1i coild icnn' , if I'17v ire,

SVi n- ti he ed i ni i :I cond t t

(-on~ i ti 0" 2. 1

t~ t , t)* 11 ~ ' rt

T { 4 7*?

U -52



Substitution of e ilations (2.1.3) and (2. 1 .) into (2V.5) iw ys,

N K* '7'?f ( n i
(2.2.) X (t) 6k (t)z fk (Y (t)o) i " d (t-o k n=l " T x I l n:!

Si hstitutin, (2.1.4) into (2,2.6) and collecti in tenms of
nd / j f i ve' ,

N

(2.2 '? * i [ (t - . h (ti~~ n, i l×  
i

n~l n

K rf

r_ k (t  
n r .(t/ -

J n

J=l n=l

Itiuatinv the coefficients of and emal to ero nives the differential
11 I

eqnition- (2.1.7) .nd , 2. .)

For convenience of no-,!! ion Y; h k ft) and r (t)i"' k k

will '" redefired is

(2.2J 
- '

S10) h I(2 2.0! ;ki t ? " hk~ t * 1, I k . 1, N,

eIat ons (t.2 ) - 2.2.11 may nou he u-ed to define e,'a tion 2. 1 .41 ,s

ind the differenti a0l set of equat ions (2.1 ) in: 2.1. ,) beco es,

N
(2.2. 1 ) Lk, _ * .i , 1 = 1. 1. 1 --

n

n- n~1 7 X
~~1



(2.2 .14) W. - W . - Ij 1. + 1, K, k I 1 N

'ro establish the initial conditions for equations (2.2.13) and (2.2.14)

note that at t =t &equation (2.1..-,) is,

(2.2.15) xk t) x (t °  (t ) k 1. I.

k-0 k 00O k 0

and equition (2.1.S is,

which implies that at t = t E ft) = k

I Since ( t i ,t t t . the initial cnnditions fnr the
k( n 0

soT of linearized differential equations (2.1.7) and (2.1.1) are:

(j
(2.2.17) W (t k- r 1,. , N

(2..1)i . ) ji = + I k 1, N

2.3 Solvine For Corrections to Jnknown Initial (ondition-

and Unknown Parameters.

[isinr! equations (2.1-3) and (2.2.12). eqmation (2.1.2) miv he

[ exnreqsed aq,

Nil NK I.K?.(t)2

(2.3.1) S(d) f .(x(ti)0 dm I i * .. ji

i=l j=l m=l k=l

or,
~p NK LKN

(2.3.2) S(d) E A j Wk(ti) ... y(tj
I j=l M=l k=l k

!

-7



S,'tti np,
N 

T (x(t.) 0

(2.3() -.-t ----) ----

k=k

(2.3.?) becomes,

(2.3.,4) S(d) Z (tr )-Yj -P(Xu~ 0 )t

'The -,ct of (I Is that Mi~ke (2. 3.4) n .iri m- -ire, deterii ned h%'

t.akin' the '-irti-il o-f S(r) w~ith rnspoct tn (I ind setting these partials

NP r \K 1.Ki' d' 1r n yi x(

or

r NP N , NP N K

T"= I i- =I

-~ km n) k~1
m=1

(2.1.6~)

where
NP N

Nil NK

'Rolvin' the lineir vet of Algehraic oeiizitionr 2.3 in the

IK iinkflowfl dI ,ivf"; the rorrertirn's; to flip initial ronrhjtjonq id poraimetrrs

-8



r Ihu5.the updated estimates will he,

(2.3.8) X. (t x = .(t ) * d ,I
1 1 0 30

(2.3.0) c. c. + d. I I 1, Kj 1 3 1

1.9



3. COMPUTER FLOW DIAGRAM

In Figure 1 a very general computer flow diagram is represented.

The purpose of this diagram is not to explain all the details of the pro-

gram but to give a general idea how the equations developed in Section 2

are proi!rammed. A brief description of the seven blocks shown in Figure 1

is as follows:

1. Read Input Data requires that the user furnish an initial

guess for the vector c or a subroutine that produces a set

of initial guesses from the data ,equation (lS)). This

amounts to furnishing i. initial guesses to the unknown

initial conditions and K initiai guesses to the unknown

parameters. Known initial conditions, system constants, and

test data must also be furnished.

2. Solving equation (1.2) for a complete solution over the

interval (t ,T) is performed by a numerical integration

scheme that is p,rt of our Tresent CAl. computer facility.

"he results of this inteoration are stored temporarily in

core. S.ymholically, this solution is called x(t)0 (Tt is

iMnortanr to note ti,. x(t) j X(to)).

Solve linearized equations and accumulate elements of

matrices L and I).

4. Solves a set of L + K linear equations given hy (2.3.6) for

the l, + K unknowns di. The di, i = 1, L + K are corrections

to the L unknown initial conditions an6 the K unknown

parameters.

5, Correct the initial guess for vector c by,

c. c. + d. i L'"1 1 1

for initial conditions

and,
c. = c. * d. i= L. , I.+ K

C 1 1

for the parameters.

-lo-
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i |6. A .fficient condition for converigence of the vector c

is IAL.J/L I J - for i 1, L K. E is a parameter

F chosen by the user. Special convergence tests and modifi.-

cations of the d. are included to !prevent larpe correctiors

from disturbing the solution.

7. Output is generated in a subroutine in the form of tables

i and/or pravhs.

The success of the propram was due lar-ely to the inclusion of

techniques for handline subsets of the piven data which were expanded to

include the complete data as the ororTress converged.

11!
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[ Read Input Data1J

Solve Equation (1.2) 2

fo ~)0 t0 t T

Solve Linearized Set

of Equations (2.1.7' .nd

(2.1.8)

44
Solve for din's via

Equations (2.3.6)

Update Unknown

Initial Conditions and

Parameters via Equations

7
Output

Computer Flow

Diagram

Figure 1
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r 4. IDENTIFICATION OF PARAMETERS EXAMPLE

The following problem of Aircraft Parameter Identification is

F, used here to illustrate the use of r-.sults developed in Section 2. For

this problem equation (1.1) is,

g2(x(t)) - x2(t)

WO) w-x.(t)

(4.1) g3 (x(t)) B x3(t)

P g4(x(t)) 3 x4 (t)

Where xl(t), x2(t), x3(t) and x4 (t) are constrained by the set

of differential equations,

x I  0 0 0 x 0
S 2 0 cI c2  C3  2 c4

1! (4.2)
5 .0 47 c5  c 6  -1 x x3  c 7

14  0 c8  c19 C0 x4  c 1
L

For this problem it is assumed that all initial conditions are

_ known ..d are:

(4.3) x (t) ' j, - 1,4

Thus, there are no unknown initial conditions so that L - 0 in the identity

(1.5). In (4.2) there are 11 unknown parameters (ci, i - 1, 11) so that
K - 11 in identity (1.5). The proolem then is to find a vector c

that minimizes (1.6). The program does this provided an initial guess is

Bm assumed or calculated. For this problem, the initial guess for the vector

Fit c was calculated by using -,Dine functions [21.

4.1 Estimating Initial Vector c by Spline Functions

Test data (designated by (j - 1, 4; i - 1, 95) was given for

(1) x i -x l(t), i 1, 4 here and in the sequel.

Ii -13-



x1(ti) , x2(ti) , x3(t i) and x4 (ti) at 95 equally spaced points. Using
this data spline functions were calculated. Substituting these splined

functions(designated by 'X(t), /2(t), 3 (t) and "'(t)) into equations

(4.2) and integrati-- gives the set of e imaates.

x 1 (ti) 0 1 0 0 fo 1 dt 0

x2 (ti) c c2  2 dt

2 4q

x3(t i) .05467 c5  c6  -1 jox3 dt c7

x4(ti) 0 c c9  cO fIx4 dct
L 4-i I 8 910 4dt1

(4.4) i = 1, 93

Forming a measure of the differences between Y. and x.(t.) squared as,

4 95

(4.5) E -i)-Y)ji2
P1. i.1

gives for

(4.6) E 0 k- 1, 11
ack

a set of eleven linear equations in the unknown c k 1, 11. This

method proved to be an effective way to get an initial estimate for

vector c.

4.2 Lquations Users Need To Furnish

The user needs to provide the mathematical model of the

experiment such as is given by equations (1.1) and their partials with

respect to xk . Further partials of equations (1.4) with respect to xk

and ck are needed. Input data, system constants, and convergence test

constants are also needed.

4.3 Results

Figures I through 4 are the results of integrating equations (1.2)

-14-



F

(after convergence of the vector c). The symbol x in the figures

indicates the Y.. data points for j a 1, 4 and i - 1, 95 and the
)I

continuous curves represent the final solutions of equations (1.2).

The vector components of c given on Figure 1 is the set of parameters

that this quasilinearization program converged to and this vector c

represents a local minimum of the function S(c) given by equation (1.6).

Some interesting things to note are that:

1. Equation (1.2) can be non-linear.

2. Initial guesses for ck s are not needed if equations (1) are

linear in Ck'3 (linear or non-linear in x). Ihis was the

case duscribed in 4.1.

3. If equation (1.2) is non-linear in c k's. a set of initial

guesses of the ck's is :equired. (In many cases slight

changes in the math model will permit one to estimate ck's).

4. The program finds a local minimum of (1.6). Searching techniques

would have to be derived to find a global minimum.

It is the opinion of the authors that many estimation problems

can be solved by this method of quasilinearization. Simplicity of

application and spe~d (about 12 minutes to solve the above example) appears

l] to be som of its values. Combining the use of the high speed conputer and

historical mathematics gives onethe tools to solve a host of identification

[problems that in the past would have demanded many hours of a human guided
search techni.e to converge on a local minimum solution.F
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